题意:~
思路:给定一个图,几个障碍点,问删除至多一条边能否使得起始位置到不了终点位置,即求最小割。数据范围较大,还卡SAP,ISAP,只能用dinic过?
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PI;
typedef pair< PI, int> PII;
#define pb push_back
#define Key_value ch[ch[root][1]][0]
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define MS(x,y) memset(x,y,sizeof(x))
const double eps = 1e-8;
const double pi = acos (-1.0);
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int M = 1000100;
const int MAXN = 2000050;
const int MAXM = 18000000;
int dir[][2] = {1, 2, 2, 1, -1, 2, -2, 1, 1, -2, 2, -1, -1, -2, -2, -1};
struct Edge
{
int to, next, cap, flow;
} edge[MAXM];
int tol;
int head[MAXN];
void init()
{
tol = 2;
memset(head, -1, sizeof(head));
}
void addedge(int u, int v, int w, int rw = 0)
{
edge[tol] = (Edge){v, head[u], w, 0};
head[u] = tol++;
edge[tol] = (Edge){u, head[v], rw, 0};
head[v] = tol++;
}
int Q[MAXN];
int dep[MAXN], cur[MAXN], sta[MAXN];
bool bfs(int s, int t, int n)
{
int front = 0, tail = 0;
memset(dep, -1, sizeof(dep[0]) * (n + 1));
dep[s] = 0;
Q[tail++] = s;
while(front < tail)
{
int u = Q[front++];
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(edge[i].cap > edge[i].flow && dep[v] == -1)
{
dep[v] = dep[u] + 1;
if(v == t) return true;
Q[tail++] = v;
}
}
}
return false;
}
int dinic(int s, int t, int n)
{
int maxflow = 0;
while(bfs(s, t, n))
{
for(int i = 0; i < n; ++i) cur[i] = head[i];
int u = s, tail = 0;
while(cur[s] != -1)
{
if(u == t)
{
int tp = INF;
for(int i = tail - 1; i >= 0; i--)
tp = min(tp, edge[sta[i]].cap - edge[sta[i]].flow);
maxflow += tp;
for(int i = tail - 1; i >= 0; i--)
{
edge[sta[i]].flow += tp;
edge[sta[i] ^ 1].flow -= tp;
if(edge[sta[i]].cap - edge[sta[i]].flow == 0)
tail = i;
}
u = edge[sta[tail] ^ 1].to;
}
else if(cur[u] != -1 && edge[cur[u]].cap > edge[cur[u]].flow && dep[u] + 1 == dep[edge[cur[u]].to])
{
sta[tail++] = cur[u];
u = edge[cur[u]].to;
}
else
{
while(u != s && cur[u] == -1)
u = edge[sta[--tail] ^ 1].to;
cur[u] = edge[cur[u]].next;
}
}
}
return maxflow;
}
bool vis[1005][1005];
int main()
{
int n, m, q;
int sx, sy, ex, ey;
while(~scanf("%d%d%d%d%d%d%d", &n, &m, &sx, &sy, &ex, &ey, &q), n)
{
init();
MS(vis, false);
int x, y;
for(int i = 0; i < q; ++i)
{
scanf("%d%d", &x, &y);
vis[x][y] = 1;
}
for(int i = 1; i <= n; ++i)
{
for(int j = 1; j <= m; ++j)
{
if(vis[i][j]) continue;
int flow = 1;
if((i == sx && j == sy) || (i == ex && j == ey)) flow = INF;
int u = (i - 1) * m + j;
addedge(u, u + n * m, flow);
for(int k = 0; k < 8; ++k)
{
int xx = i + dir[k][0];
int yy = j + dir[k][1];
if(xx < 1 || xx > n || yy < 1 || yy > m || vis[xx][yy]) continue;
int v = (xx - 1) * m + yy;
addedge(u + n * m, v, 1);
}
}
}
int st = n * m * 2 + 1;
int ed = n * m * 2 + 2;
addedge(st, (sx - 1)*m + sy, INF);
addedge((ex - 1)*m + ey, ed, INF);
int ans = dinic(st, ed, n * m * 2 + 2);
if(ans <= 1) cout << "Yes" << endl;
else cout << "No" << endl;
}
return 0;
}
/*
1000 1000 1 1 1000 1000 0
*/
- 版权声明:本文基于《知识共享署名-相同方式共享 3.0 中国大陆许可协议》发布,转载请遵循本协议
- 文章链接:http://www.carlstedt.cn/archives/1380 (转载时请注明本文出处及文章链接)


发表评论
快来吐槽一下吧!