题意:~
思路:给定一个图,几个障碍点,问删除至多一条边能否使得起始位置到不了终点位置,即求最小割。数据范围较大,还卡SAP,ISAP,只能用dinic过?
#include <bits/stdc++.h> using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> PI; typedef pair< PI, int> PII; #define pb push_back #define Key_value ch[ch[root][1]][0] #define lson l,mid,rt<<1 #define rson mid+1,r,rt<<1|1 #define MS(x,y) memset(x,y,sizeof(x)) const double eps = 1e-8; const double pi = acos (-1.0); const int mod = 1e9 + 7; const int INF = 0x3f3f3f3f; const int M = 1000100; const int MAXN = 2000050; const int MAXM = 18000000; int dir[][2] = {1, 2, 2, 1, -1, 2, -2, 1, 1, -2, 2, -1, -1, -2, -2, -1}; struct Edge { int to, next, cap, flow; } edge[MAXM]; int tol; int head[MAXN]; void init() { tol = 2; memset(head, -1, sizeof(head)); } void addedge(int u, int v, int w, int rw = 0) { edge[tol] = (Edge){v, head[u], w, 0}; head[u] = tol++; edge[tol] = (Edge){u, head[v], rw, 0}; head[v] = tol++; } int Q[MAXN]; int dep[MAXN], cur[MAXN], sta[MAXN]; bool bfs(int s, int t, int n) { int front = 0, tail = 0; memset(dep, -1, sizeof(dep[0]) * (n + 1)); dep[s] = 0; Q[tail++] = s; while(front < tail) { int u = Q[front++]; for(int i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].to; if(edge[i].cap > edge[i].flow && dep[v] == -1) { dep[v] = dep[u] + 1; if(v == t) return true; Q[tail++] = v; } } } return false; } int dinic(int s, int t, int n) { int maxflow = 0; while(bfs(s, t, n)) { for(int i = 0; i < n; ++i) cur[i] = head[i]; int u = s, tail = 0; while(cur[s] != -1) { if(u == t) { int tp = INF; for(int i = tail - 1; i >= 0; i--) tp = min(tp, edge[sta[i]].cap - edge[sta[i]].flow); maxflow += tp; for(int i = tail - 1; i >= 0; i--) { edge[sta[i]].flow += tp; edge[sta[i] ^ 1].flow -= tp; if(edge[sta[i]].cap - edge[sta[i]].flow == 0) tail = i; } u = edge[sta[tail] ^ 1].to; } else if(cur[u] != -1 && edge[cur[u]].cap > edge[cur[u]].flow && dep[u] + 1 == dep[edge[cur[u]].to]) { sta[tail++] = cur[u]; u = edge[cur[u]].to; } else { while(u != s && cur[u] == -1) u = edge[sta[--tail] ^ 1].to; cur[u] = edge[cur[u]].next; } } } return maxflow; } bool vis[1005][1005]; int main() { int n, m, q; int sx, sy, ex, ey; while(~scanf("%d%d%d%d%d%d%d", &n, &m, &sx, &sy, &ex, &ey, &q), n) { init(); MS(vis, false); int x, y; for(int i = 0; i < q; ++i) { scanf("%d%d", &x, &y); vis[x][y] = 1; } for(int i = 1; i <= n; ++i) { for(int j = 1; j <= m; ++j) { if(vis[i][j]) continue; int flow = 1; if((i == sx && j == sy) || (i == ex && j == ey)) flow = INF; int u = (i - 1) * m + j; addedge(u, u + n * m, flow); for(int k = 0; k < 8; ++k) { int xx = i + dir[k][0]; int yy = j + dir[k][1]; if(xx < 1 || xx > n || yy < 1 || yy > m || vis[xx][yy]) continue; int v = (xx - 1) * m + yy; addedge(u + n * m, v, 1); } } } int st = n * m * 2 + 1; int ed = n * m * 2 + 2; addedge(st, (sx - 1)*m + sy, INF); addedge((ex - 1)*m + ey, ed, INF); int ans = dinic(st, ed, n * m * 2 + 2); if(ans <= 1) cout << "Yes" << endl; else cout << "No" << endl; } return 0; } /* 1000 1000 1 1 1000 1000 0 */
- 版权声明:本文基于《知识共享署名-相同方式共享 3.0 中国大陆许可协议》发布,转载请遵循本协议
- 文章链接:http://www.carlstedt.cn/archives/1380 (转载时请注明本文出处及文章链接)
发表评论
快来吐槽一下吧!